
 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

116

REACT-POWERED AI AGENT FOR INTELLIGENT WEB

SEARCHING AND CONTEXTUAL DECISION-MAKING

Nadia Shaikh,
UG Student,

Department of CSE,

St. Martin’s Engineering College,
Secunderabad, Telangana, India

nadiashaikh2024@gmail.com

Ms. P. Swetha,
Assistant Professor,

Department of CSE,

St. Martin’s Engineering College,
Secunderabad, Telangana, India

gshwethacse@smec.ac.in

Abstract - In recent years, humankind has witnessed a surge in

revolutionary technologies, with Artificial Intelligence (AI)

emerging as a prominent force shaping industries and daily life.

Organizations are increasingly seeking scalable solutions that

optimize efficiency, enhance accuracy, and minimize resource

consumption. This rising demand for automation has led to the

development of AI agents. AI agents are autonomous, perceptive

software systems capable of performing tasks on behalf of users.

These intelligent agents possess key functionalities such as

reasoning, planning, decision-making, learning, adaptation,

and action execution. They find applications across various

domains, such as research, automation, sales, marketing,

search engine optimization (SEO), coding, customer support,

and beyond. The AI agent industry is projected to become a

multi-billion-dollar market by 2030, revolutionizing the way

businesses and individuals interact with technology. A crucial

aspect of AI agent design is the ReAct (Reasoning + Action)

framework, which enables agents to dynamically think, act,

observe, and refine their responses in an iterative manner. The

ReAct framework operates through a structured cycle

comprising three key components: Thought, Action, and

Observation. This loop mimics human cognitive processes by

allowing the agent to generate thoughts, determine the best

course of action based on available resources, execute actions,

and assess observations to decide the next steps. By continuously

learning from its observations, the agent refines its decision-

making process, making it more adaptive and intelligent over

time. As the field of AI agents gains prominence, numerous no-

code and low-code platforms have emerged, allowing businesses

and developers to build AI-driven assistants that perform

specialized tasks independently or collaborate with other agents.

We explore the architectural foundations of ReAct agents by

constructing one from the ground up and evaluating its

efficiency in retrieving and processing information. To

accomplish this, we integrate the Groq API for leveraging a

Large Language Model (LLM) and utilize SERPApi to facilitate

real-time web searches via Google. The Groq API enables us to

integrate a large language model, serving as the core of the

ReAct implementation. The SERPApi gives Google Search

Results. This project illustrates the practical implementation of

the thought-action-observation cycle, showcasing how an AI

agent autonomously navigates search queries, processes

retrieved data, and returns relevant, contextual, and optimized

results. By analyzing the effectiveness of the ReAct approach in

structured decision-making and information retrieval, this

research highlights the potential of AI agents in enhancing

knowledge discovery, automating workflows, and optimizing

human-computer interactions. Through this work, we aim to

contribute to the growing field of AI-driven automation by

demonstrating the real-world applicability, efficiency, and

scalability of ReAct-based intelligent agents.

Keywords: AI Agents, ReAct Framework, Large Language

Models, APIs, Web Search, Thought-Action-Observation loop.

I. INTRODUCTION

An AI Agent is a software system capable of autonomously

performing tasks without human intervention. These systems

collect data from their environment and leverage it to achieve

specific objectives. Their core functionalities include reasoning,

acting, decision-making, learning, and task execution. Unlike

traditional chatbots, such as ChatGPT, which engage in

conversational interactions, AI agents operate based on their

perception of an organization’s needs and execute tasks

accordingly. AI agents can be classified in multiple ways,

depending on their application. Some define them as systems

capable of independently performing tasks for extended periods

while utilizing different tools for handling complex workflows.

Others describe AI agents as implementations that follow

predefined workflows [1]. Many companies have already

integrated AI agents into their teams, with approximately 51% of

organizations adopting them in development environments. Mid-

sized companies (ranging from 100 to 2,000 employees) have

shown a particularly high adoption rate, with 63% deploying AI

agents in production [2, 3].

To better understand the ReAct framework, let’s consider a

simple analogy: making tea. The process begins with a thought,

the person decides to boil water. To achieve this, they perform

an action that is lighting the stove using a tool, such as a lighter.

After observing that the water has started boiling, they articulate

the next thought which is to add tea leaves and sugar. Once they

observe the tea brewing, they proceed to add the required amount

of milk. Each thought leads to an action, and based on the

resulting observation, the next thought is triggered. This cyclical

mailto:nadiashaikh2024@gmail.com
mailto:gshwethacse@smec.ac.in

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

117

Action

tools outcome

Thought input
Observation

process of thought, action, and observation is central to the ReAct

framework. Similarly, an AI agent implementing ReAct operates

by reasoning through a task, executing an action, observing the

outcome, and iterating based on new information [4, 5]. To

execute specific actions, the AI agent utilizes tools from a

predefined set. These tools enable the agent to interact with

external systems, fetch data, or perform computations, just as a

human would use utensils and ingredients while making tea.

The system prompt plays a crucial role in guiding the AI agent,

instructing it on how to think, what tools to use, and how to

articulate its reasoning to invoke subsequent thoughts. For this

implementation, we use the Groq API, which allows us to

II. RELATED WORK

In [6] Yan et al, proposed a general AI agent framework for smart

buildings based on LLMs and ReAct Strategy. In the construction

industry, the concept of smart buildings is gaining traction. It can

be achieved with effective interaction algorithms which current

human-computer interaction algorithms lack. So, the paper

introduces the concept of large language models and Ai agents

into smart building, using ReAct strategy. The LLM acts as the

core of the agent and has reasoning abilities to make the required

decisions. LLM will interpret user intent and accordingly perform

the necessary actions. The experiment was conducted on a virtual

building and demonstrated completion of 91% of simulated tasks.

The agent was deployed on a single-board computer.

In [7] T. Masterman et al, examined the advancements in AI agent

implementations, and how they can achieve complex goals using

reasoning, tool execution and planning. In this paper, the authors

have mentioned the pros and cons of existing implementations of

AI Agents. They have also provided insights gained from their

observations by providing an explanation on single-agent and

multi-agent architectures and assessing their impact on

accomplishing goals. In this paper, the authors have outlined the

key themes when selecting an agentic architecture, the impact of

leadership on agent systems, agent communication styles, and key

phases for planning, execution, and reflection that enable robust

AI agent systems.

J. Blümel and G Jha [8] designed a conservational AI Agent. They

have explained how the existing methods of conversational AI

agents do not ensure customer satisfaction. So, in this paper the

authors have developed a framework to design conversational AI

agents. They have proposed a six-stage iterative design that can

sense the customer intent, adapt to the context, assign tone to the

conversation, training of agents and adaptively improve. The aim

of the project is to enhance CX (Customer Experience).

Dennis, Alan R, et al [9], performed a research which compared

the performance of a virtual team of AI agents with a regular team

of humans. They evaluated the coordination between the virtual

and real time. Upon conducting an experiment, the researchers

found out that the conflict between the agent and person was less

when performance was good but the perceived conflict was more

when there was lower performance. It was also observed that the

integrate a Large Language Model (LLM) as the agent’s core

reasoning engine. Using an API key, the client sends requests to

the server, processes responses, and returns meaningful results.

Users can specify their preferred LLM model, in this case the

Llama-3b-70-8192 model has been used as it is better suited for

the implementation of AI agents. To incorporate web searching

capabilities, we utilize SERPApi, an efficient API that

fetches real-time web search results from Google. The retrieved

results are then processed by the LLM, which analyzes and

synthesizes the most relevant answer. This enables the AI agent

to perform live web searches and return accurate information

dynamically.

process satisfaction was lower. Their research suggested that AI

team members are likely to be accepted into teams, meaning that

many old collaboration research questions may need to be

reexamined to consider AI team members.

In [10] Hamada et al, have discussed about AI agents facilitating

social interaction and wellbeing. It has become a trend in

individual’s mental wellbeing, organizational health, and has

enhanced societies. There are diverse applications of wellbeing

AI. In the paper, the authors have proposed a brief on the

mediative role of AI-augmented agents for social interactions. A

two-dimensional framework is developed which classifies

wellbeing AI to individual or group and analysis or intervention.

This agent also assists in human-human interaction and improving

social behaviours. But this approach is unethical.

III. PROPOSED WORK

This research aims to build a ReAct Pattern from the ground up,

to gain a understand of the foundations of this framework.

Utilization of the framework in an AI Agent has many

applications ranging from automation to research. AI Agents are

efficient and intelligent software systems that can perform tasks

autonomously on behalf of the user. The ReAct pattern, which

stands for Reasoning and Action, is a structured methodology that

defines how the AI agent processes information, makes decisions,

responds and observes in an iterative manner much like the human

mind thus making these systems more adaptable and intelligent.\

Fig 3: ReAct Framework Loop

The ReAct framework operates through a structured cycle

consisting of Thought, Action and Observation. The first phase of

the AI Agent is Thought in which it receives input and generates

an internal thought process based on the context. This is where

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

118

reasoning takes place, allowing the agent to decide what action to

take next. After reasoning, the next phase is Action. Here, the AI

Agent makes an action by selecting a tool from the given list of

available tools. The action’s output is not the final output but

rather it is a step that helps in refining the response. After

performing an action, the AI agent observes the outcome and

processes the result. If the retrieved information is insufficient, the

agent might refine its approach and repeat the cycle. If the

observation provides enough clarity, the agent finalizes its

response. The below figure 3 illustrates the working of the AI

agent built for web searching.

Fig 4: Design of the ReAct Framework for Enhanced Web

Searching

3.1 Groq API

The API used in this research is provided by Groq, which allows

the creation of a client that communicates via the API.

The Llama-3B-70-8192 LLM is being used, as research suggests

it is effective in performing AI agent tasks. Groq’s platform

offers a suite of large language models (LLMs), allowing users

to choose a model based on their specific use case and

computational needs.

After obtaining the API key and configuring the environment,

the user must perform a chat completion by specifying key

parameters. These parameters define how the AI model

processes and generates responses. Some essential parameters

include:

• Model: Specifies the LLM to be used (e.g., "llama-3b-

70-8192").

• Messages: A structured list containing user prompts

and system responses. Typically, it includes roles such

as "system", "user", and "assistant" to guide the

conversation.

3.2 Agent Code

To enable AI-driven interactions using the ReAct Pattern,

an Agent class is defined that encapsulates key functionalities

required for reasoning and action execution. This class contains a

parameterized constructor and three essential

methods: init , call , and execute.

Initialization (init Method): The init method serves as

the constructor for the Agent class. It initializes the following:

• Client: The API client used to communicate with the

LLM.

• System: A predefined system prompt that establishes

the agent’s behavior and constraints.

• Messages: A list that stores the history of interactions,

including user inputs, system messages, and AI-

generated responses.

Handling User Input (call Method): The call method

allows the agent instance to be invoked directly as a function. This

method handles:

• Appending user messages to the interaction history.

• Calling the execute method to generate a response.

• Appending the AI-generated response to the message

list.

• Returning the AI’s response to the user.

Generating AI Responses (execute Method):

The execute method is responsible for communicating with

the Groq API and retrieving responses from the Llama-3B-70-

8192 model. It constructs a chat completion request using the

message history and returns the AI-generated output.

3.3 System Prompt

The system prompt guides the AI Agent. It demonstrates the

manner in which the AI Agent should work. This specifies how

the agent will think, what tools to use, what should be done with

the outcome of an action, and when to give the final response.

In this research, the system prompt is specified in a system prompt

variable which contains a multi-line string. It mentions that the AI

Agent works in a loop of Thought, Action, PAUSE, Observation.

At the end of the loop the agent has to provide an answer. Thought

is to be used to describe the agent’s thoughts about the question

asked. Action is used to run the available tools that the agent has,

followed by this, the agent has to returm PAUSE. Observation

will be the result of the actions.

The next line describes the actions available to the agent. In this

research the actions are:

• calculate: it runs a calculation and returns the number.

• get_planet_mass: returns weight of planet in kg.

• search_web: Searches the internet and returns relevant

information.

Along with the name of the tools, examples are also provided to

offer better guidance to the agent.

Two example sessions are specified which demonstrate how the

agent, when given a question by the user, has to get a thought,

which action it should perform, the outcome of the action leading

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

119

to an observation, which in turn acts as input for the thought in the

next iteration of the loop.

For example, sample session 2: Question: What is the latest AI

trend? Thought: I should search the web for AI trends. Action:

search_web: Latest AI trends PAUSE You will be called again

with this: Observation: AI is shifting towards multi-modal models

in 2024. Answer: The latest AI trend is multi-modal models in

2024.

Finally we end with the line, “Now it’s your turn.”

3.4 Tools

To enhance the AI agent’s functionality, several tools are

integrated to perform external tasks such as web searching,

mathematical calculations, and retrieving planetary data. Each

tool provides specific capabilities that assist the agent in executing

reasoning-based actions efficiently.

SerpAPI, Web Search Tool: SerpAPI is a Google Search API

that allows the agent to retrieve search results programmatically.

Before using this API, the google-search-results package must be

installed. The API enables the agent to query Google, fetch

relevant results, and extract information from organic search

listings. This functionality is useful for retrieving up-to-date

information that may not be present in the AI’s pre-trained

knowledge base.

Mathematical Computation Tool: The agent includes a simple

evaluation tool to process mathematical expressions dynamically.

This allows users to input arithmetic operations, which the agent

computes and returns. By leveraging Python’s built-in evaluation

mechanisms, the tool supports basic operations like addition,

subtraction, multiplication, and division.

Planet Mass Retrieval Tool: It provides the mass of various

planets in the Solar System based on predefined values. When a

user asks for a planet’s mass, the tool matches the input with the

corresponding celestial body and returns its standard mass in

kilograms. This ensures accurate and quick retrieval of

astronomical data.

3.5 Running the AI Agent

Once the AI agent and its tools are set up, it is executed using a

loop-based mechanism that enables interaction, reasoning, and

tool usage. The agent loop serves as the core logic of how the

agent processes queries and responds iteratively.

Defining Tool Functions: A dictionary

named tool_functions maps function names to their

corresponding implementations. This ensures that the agent can

dynamically call specific tools when required. The available tools

include:

• calculate – Evaluates mathematical expressions.

• get_planet_mass – Retrieves the mass of a given planet.

• search_web – Searches the web using the SerpAPI.

Agent Loop Mechanism: The agent_loop function specifies how

the agent will operate. The loop operates based on the following

logic:

• Initialization:

o An instance of the Agent class is created with

a system prompt.

o A list of available tools is defined.

o The user query is set as the first input.

• Iteration & Processing:

o The loop runs for a predefined maximum

number of iterations.

o The agent processes the query and generates a

response.

o The response is printed for monitoring.

• Action Handling:

o If the agent detects an action request (e.g.,

calling a tool), it extracts the tool name and

argument using regular expressions.

o If the specified tool is available, the function is

executed with the provided argument.

o The observation from the tool is appended as

feedback to the next cycle of reasoning.

• Answer Generation:

o If the agent determines that an answer has been

reached, it exits the loop.

o Otherwise, the cycle continues with the

updated prompt.

Execution Example: The agent is initiated with a sample query:

agent_loop(max_iterations=10, system=system_prompt,

query="What is the capital city of India?")

• The loop ensures that the agent can think, act, and

observe repeatedly until a final response is produced.

• If external information is required, the agent utilizes one

of the defined tools before generating a final answer.

3.6 Calculating Response Time and Accuracy

To evaluate the accuracy and time taken, five queries were given.

User input was taken to determine the relevance of the given

output. To calculate the response time, the time module in Python

was used. A list ‘response_time’ stored the time taken for the

query’s answer to be returned. Followed by that, the average

response time was calculated. Finally, the accuracy for the queries

was determined by using the responses that the user gave ‘yes’ to

by the total number of queries.

IV. RESULTS AND DISCUSSIONS

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

120

Thought: I need to find the capital city of

India.

Action: search_web: Capital city of India

PAUSE

Observation: Delhi, officially the National

Capital Territory (NCT) of Delhi, is a city

and a union territory of India containing

New Delhi, the capital of India.

Thought: I have found the capital city of

India, which is New Delhi.

Answer: The capital city of India is New

Delhi.

The below code snippet shows how the AI Agent using ReAct

framework functions. The user queries, “What is the capital city

of Delhi?” Then the Agent goes through the following:

Figure 4 shows how the ReAct framework used by the AI Agent

for performing web searching using the given tools. The LLM acts

as the core of the AI Agent and it utilizes the tools to perform the

required tasks. The SERP API performs real-time searching

which assists the model in providing the most relevant

information related to the query. The AI-powered web search

agent was tested using SERP API to determine the efficiency.

To get an estimate of the time taken, 5 queries were given to the

agent. The relevance of the statements was also determined by

calculating accuracy. The system demonstrated an average

response time of 1.44 seconds, indicating efficient processing and

retrieval speed. This performance is crucial for real-time web

search applications where minimal latency is required. To assess

accuracy, we manually reviewed the top search result returned by

our AI for each query. Based on a binary user feedback system

(relevant/non-relevant), the AI agent achieved an accuracy of

80%. This suggests that while the system is effective in retrieving

relevant results, there is room for improvement in refining the

query processing and filtering mechanisms.

V. CONCLUSION

In this paper, we developed and evaluated an AI-powered web

search assistant capable of retrieving and filtering relevant

information in real-time. By leveraging the SERP API, our system

efficiently extracts query-based search results and assesses their

relevance based on user feedback. The experimental results

indicate that the AI agent achieves an accuracy of 80%, with

an average response time of 1.44 seconds, demonstrating its

effectiveness in providing quick and relevant search results.

While the model performs well in retrieving factual data, some

limitations remain, particularly in handling ambiguous queries

and ranking information based on context. Future work could

enhance the system by integrating natural language understanding

(NLU) techniques, improving contextual relevance, and

incorporating machine learning-based ranking models. Overall,

this research contributes to the development of AI-powered search

assistants, bridging the gap between automated information

retrieval and user intent.

REFERENCES

1. Anthropic, "Building Effective Agents," Anthropic, Feb.

2024. [Online].

Available: https://www.anthropic.com/engineering/building-

effective-agents. [Accessed: 10-Mar-2025].

2. MarketsandMarkets, "AI Agents Market - Global Forecast to

2028," Sept. 2024. [Online]. Available:

https://www.marketsandmarkets.com/Market-Reports/ai-

agents- market-15761548.html

3. Roots Analysis, "AI Agents Market."

Available: https://www.rootsanalysis.com/AI-Agents-

Market. [Accessed: 9-Mar-2025].

4. S. Willison, "Python and the ReAct pattern for LLMs."

Available: https://til.simonwillison.net/llms/python-react-

pattern. [Accessed: 9-Mar-2025].

5. Yao, Shunyu, Zhao, Jeffrey, Yu, Dian, Du, Nan, Shafran,

Izhak, Narasimhan, Karthik, and Cao, Yuan. ReAct:

Synergizing Reasoning and Acting in Language Models.

Retrieved from https://par.nsf.gov/biblio/10451467.

International Conference on Learning Representations

(ICLR)

6. X. Yan et al., "A general AI agent framework for smart

buildings based on large language models and ReAct

strategy," Smart Computing, early online, 2025. [Online].

Available: https://pdf.elspublishing.com/paper/journal/open/

SC/earlyOnline/2025/SC-20250004.pdf.

7. T. Masterman et al., "The landscape of emerging AI agent

architectures for reasoning, planning, and tool calling: A

survey," arXiv preprint arXiv:2404.11584, 2024.

8. J. Blümel and G. Jha, "Designing a conversational AI agent:

Framework combining customer experience management,

personalization, and AI in service techniques," 2023.

9. Dennis, Alan R., Akshat Lakhiwal, and Agrim Sachdeva. "AI

agents as team members: Effects on satisfaction, conflict,

trustworthiness, and willingness to work with." Journal of

Management Information Systems 40.2 (2023): 307-337.

10. Hamada, Hiro Taiyo, and Ryota Kanai. "AI agents for

facilitating social interactions and wellbeing." arXiv preprint

arXiv:2203.06244 (2022).

https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.marketsandmarkets.com/Market-Reports/ai-agents-
https://www.marketsandmarkets.com/Market-Reports/ai-agents-
https://www.rootsanalysis.com/AI-Agents-Market
https://www.rootsanalysis.com/AI-Agents-Market
https://til.simonwillison.net/llms/python-react-pattern
https://til.simonwillison.net/llms/python-react-pattern
https://par.nsf.gov/biblio/10451467
https://pdf.elspublishing.com/paper/journal/open/SC/earlyOnline/2025/SC-20250004.pdf
https://pdf.elspublishing.com/paper/journal/open/SC/earlyOnline/2025/SC-20250004.pdf

