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Abstract - In recent years, humankind has witnessed a surge in 

revolutionary technologies, with Artificial Intelligence (AI) 

emerging as a prominent force shaping industries and daily life. 

Organizations are increasingly seeking scalable solutions that 

optimize efficiency, enhance accuracy, and minimize resource 

consumption. This rising demand for automation has led to the 

development of AI agents. AI agents are autonomous, perceptive 

software systems capable of performing tasks on behalf of users. 

These intelligent agents possess key functionalities such as 

reasoning, planning, decision-making, learning, adaptation, 

and action execution. They find applications across various 

domains, such as research, automation, sales, marketing, 

search engine optimization (SEO), coding, customer support, 

and beyond. The AI agent industry is projected to become a 

multi-billion-dollar market by 2030, revolutionizing the way 

businesses and individuals interact with technology. A crucial 

aspect of AI agent design is the ReAct (Reasoning + Action) 

framework, which enables agents to dynamically think, act, 

observe, and refine their responses in an iterative manner. The 

ReAct framework operates through a structured cycle 

comprising three key components: Thought, Action, and 

Observation. This loop mimics human cognitive processes by 

allowing the agent to generate thoughts, determine the best 

course of action based on available resources, execute actions, 

and assess observations to decide the next steps. By continuously 

learning from its observations, the agent refines its decision- 

making process, making it more adaptive and intelligent over 

time. As the field of AI agents gains prominence, numerous no- 

code and low-code platforms have emerged, allowing businesses 

and developers to build AI-driven assistants that perform 

specialized tasks independently or collaborate with other agents. 

We explore the architectural foundations of ReAct agents by 

constructing one from the ground up and evaluating its 

efficiency in retrieving and processing information. To 

accomplish this, we integrate the Groq API for leveraging a 

Large Language Model (LLM) and utilize SERPApi to facilitate 

real-time web searches via Google. The Groq API enables us to 

integrate a large language model, serving as the core of the 

ReAct implementation. The SERPApi gives Google Search 

Results. This project illustrates the practical implementation of 

the thought-action-observation cycle, showcasing how an AI 

agent autonomously navigates search queries, processes 

retrieved data, and returns relevant, contextual, and optimized 

results. By analyzing the effectiveness of the ReAct approach in 

structured decision-making and information retrieval, this 

research highlights the potential of AI agents in enhancing 

knowledge discovery, automating workflows, and optimizing 

human-computer interactions. Through this work, we aim to 

contribute to the growing field of AI-driven automation by 

demonstrating the real-world applicability, efficiency, and 

scalability of ReAct-based intelligent agents. 

 

Keywords: AI Agents, ReAct Framework, Large Language 

Models, APIs, Web Search, Thought-Action-Observation loop. 

 

I. INTRODUCTION 

 

An AI Agent is a software system capable of autonomously 

performing tasks without human intervention. These systems 

collect data from their environment and leverage it to achieve 

specific objectives. Their core functionalities include reasoning, 

acting, decision-making, learning, and task execution. Unlike 

traditional chatbots, such as ChatGPT, which engage in 

conversational interactions, AI agents operate based on their 

perception of an organization’s needs and execute tasks 

accordingly. AI agents can be classified in multiple ways, 

depending on their application. Some define them as systems 

capable of independently performing tasks for extended periods 

while utilizing different tools for handling complex workflows. 

Others describe AI agents as implementations that follow 

predefined workflows [1]. Many companies have already 

integrated AI agents into their teams, with approximately 51% of 

organizations adopting them in development environments. Mid- 

sized companies (ranging from 100 to 2,000 employees) have 

shown a particularly high adoption rate, with 63% deploying AI 

agents in production [2, 3]. 

 

To better understand the ReAct framework, let’s consider a 

simple analogy: making tea. The process begins with a thought, 

the person decides to boil water. To achieve this, they perform 

an action that is lighting the stove using a tool, such as a lighter. 

After observing that the water has started boiling, they articulate 

the next thought which is to add tea leaves and sugar. Once they 

observe the tea brewing, they proceed to add the required amount 

of milk. Each thought leads to an action, and based on the 

resulting observation, the next thought is triggered. This cyclical 
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tools outcome 
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process of thought, action, and observation is central to the ReAct 

framework. Similarly, an AI agent implementing ReAct operates 

by reasoning through a task, executing an action, observing the 

outcome, and iterating based on new information [4, 5]. To 

execute specific actions, the AI agent utilizes tools from a 

predefined set. These tools enable the agent to interact with 

external systems, fetch data, or perform computations, just as a 

human would use utensils and ingredients while making tea. 

The system prompt plays a crucial role in guiding the AI agent, 

instructing it on how to think, what tools to use, and how to 

articulate its reasoning to invoke subsequent thoughts. For this 

implementation, we use the Groq API, which allows us to 

II. RELATED WORK 

 

In [6] Yan et al, proposed a general AI agent framework for smart 

buildings based on LLMs and ReAct Strategy. In the construction 

industry, the concept of smart buildings is gaining traction. It can 

be achieved with effective interaction algorithms which current 

human-computer interaction algorithms lack. So, the paper 

introduces the concept of large language models and Ai agents 

into smart building, using ReAct strategy. The LLM acts as the 

core of the agent and has reasoning abilities to make the required 

decisions. LLM will interpret user intent and accordingly perform 

the necessary actions. The experiment was conducted on a virtual 

building and demonstrated completion of 91% of simulated tasks. 

The agent was deployed on a single-board computer. 

 

In [7] T. Masterman et al, examined the advancements in AI agent 

implementations, and how they can achieve complex goals using 

reasoning, tool execution and planning. In this paper, the authors 

have mentioned the pros and cons of existing implementations of 

AI Agents. They have also provided insights gained from their 

observations by providing an explanation on single-agent and 

multi-agent architectures and assessing their impact on 

accomplishing goals. In this paper, the authors have outlined the 

key themes when selecting an agentic architecture, the impact of 

leadership on agent systems, agent communication styles, and key 

phases for planning, execution, and reflection that enable robust 

AI agent systems. 

 

J. Blümel and G Jha [8] designed a conservational AI Agent. They 

have explained how the existing methods of conversational AI 

agents do not ensure customer satisfaction. So, in this paper the 

authors have developed a framework to design conversational AI 

agents. They have proposed a six-stage iterative design that can 

sense the customer intent, adapt to the context, assign tone to the 

conversation, training of agents and adaptively improve. The aim 

of the project is to enhance CX (Customer Experience). 

 

Dennis, Alan R, et al [9], performed a research which compared 

the performance of a virtual team of AI agents with a regular team 

of humans. They evaluated the coordination between the virtual 

and real time. Upon conducting an experiment, the researchers 

found out that the conflict between the agent and person was less 

when performance was good but the perceived conflict was more 

when there was lower performance. It was also observed that the 

integrate a Large Language Model (LLM) as the agent’s core 

reasoning engine. Using an API key, the client sends requests to 

the server, processes responses, and returns meaningful results. 

Users can specify their preferred LLM model, in this case the 

Llama-3b-70-8192 model has been used as it is better suited for 

the implementation of AI agents. To incorporate web searching 

capabilities, we utilize SERPApi, an efficient API that 

fetches real-time web search results from Google. The retrieved 

results are then processed by the LLM, which analyzes and 

synthesizes the most relevant answer. This enables the AI agent 

to perform live web searches and return accurate information 

dynamically. 

 

process satisfaction was lower. Their research suggested that AI 

team members are likely to be accepted into teams, meaning that 

many old collaboration research questions may need to be 

reexamined to consider AI team members. 

 

In [10] Hamada et al, have discussed about AI agents facilitating 

social interaction and wellbeing. It has become a trend in 

individual’s mental wellbeing, organizational health, and has 

enhanced societies. There are diverse applications of wellbeing 

AI. In the paper, the authors have proposed a brief on the 

mediative role of AI-augmented agents for social interactions. A 

two-dimensional framework is developed which classifies 

wellbeing AI to individual or group and analysis or intervention. 

This agent also assists in human-human interaction and improving 

social behaviours. But this approach is unethical. 

 

III. PROPOSED WORK 

 

This research aims to build a ReAct Pattern from the ground up, 

to gain a understand of the foundations of this framework. 

Utilization of the framework in an AI Agent has many 

applications ranging from automation to research. AI Agents are 

efficient and intelligent software systems that can perform tasks 

autonomously on behalf of the user. The ReAct pattern, which 

stands for Reasoning and Action, is a structured methodology that 

defines how the AI agent processes information, makes decisions, 

responds and observes in an iterative manner much like the human 

mind thus making these systems more adaptable and intelligent.\ 

 

Fig 3: ReAct Framework Loop 

 

The ReAct framework operates through a structured cycle 

consisting of Thought, Action and Observation. The first phase of 

the AI Agent is Thought in which it receives input and generates 

an internal thought process based on the context. This is where 
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reasoning takes place, allowing the agent to decide what action to 

take next. After reasoning, the next phase is Action. Here, the AI 

Agent makes an action by selecting a tool from the given list of 

available tools. The action’s output is not the final output but 

rather it is a step that helps in refining the response. After 

performing an action, the AI agent observes the outcome and 

processes the result. If the retrieved information is insufficient, the 

agent might refine its approach and repeat the cycle. If the 

observation provides enough clarity, the agent finalizes its 

response. The below figure 3 illustrates the working of the AI 

agent built for web searching. 

 

 

Fig 4: Design of the ReAct Framework for Enhanced Web 

Searching 

3.1 Groq API 

 

The API used in this research is provided by Groq, which allows 

the creation of a client that communicates via the API. 

The Llama-3B-70-8192 LLM is being used, as research suggests 

it is effective in performing AI agent tasks. Groq’s platform 

offers a suite of large language models (LLMs), allowing users 

to choose a model based on their specific use case and 

computational needs. 

 

After obtaining the API key and configuring the environment, 

the user must perform a chat completion by specifying key 

parameters. These parameters define how the AI model 

processes and generates responses. Some essential parameters 

include: 

 

• Model: Specifies the LLM to be used (e.g., "llama-3b- 

70-8192"). 

• Messages: A structured list containing user prompts 

and system responses. Typically, it includes roles such 

as "system", "user", and "assistant" to guide the 

conversation. 

 

3.2 Agent Code 

 

To enable AI-driven interactions using the ReAct Pattern, 

an Agent class is defined that encapsulates key functionalities 

required for reasoning and action execution. This class contains a 

parameterized  constructor  and  three  essential 

methods:  init ,  call , and execute. 

 

Initialization ( init  Method): The  init  method serves as 

the constructor for the Agent class. It initializes the following: 

• Client: The API client used to communicate with the 

LLM. 

• System: A predefined system prompt that establishes 

the agent’s behavior and constraints. 

• Messages: A list that stores the history of interactions, 

including user inputs, system messages, and AI- 

generated responses. 

 

Handling User Input ( call Method): The  call method 

allows the agent instance to be invoked directly as a function. This 

method handles: 

 

• Appending user messages to the interaction history. 

• Calling the execute method to generate a response. 

• Appending the AI-generated response to the message 

list. 

• Returning the AI’s response to the user. 

 

Generating AI Responses (execute Method): 

The execute method is responsible for communicating with 

the Groq API and retrieving responses from the Llama-3B-70- 

8192 model. It constructs a chat completion request using the 

message history and returns the AI-generated output. 

 

3.3 System Prompt 

 

The system prompt guides the AI Agent. It demonstrates the 

manner in which the AI Agent should work. This specifies how 

the agent will think, what tools to use, what should be done with 

the outcome of an action, and when to give the final response. 

In this research, the system prompt is specified in a system prompt 

variable which contains a multi-line string. It mentions that the AI 

Agent works in a loop of Thought, Action, PAUSE, Observation. 

At the end of the loop the agent has to provide an answer. Thought 

is to be used to describe the agent’s thoughts about the question 

asked. Action is used to run the available tools that the agent has, 

followed by this, the agent has to returm PAUSE. Observation 

will be the result of the actions. 

 

The next line describes the actions available to the agent. In this 

research the actions are: 

 

• calculate: it runs a calculation and returns the number. 

• get_planet_mass: returns weight of planet in kg. 

• search_web: Searches the internet and returns relevant 

information. 

 

Along with the name of the tools, examples are also provided to 

offer better guidance to the agent. 

 

Two example sessions are specified which demonstrate how the 

agent, when given a question by the user, has to get a thought, 

which action it should perform, the outcome of the action leading 
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to an observation, which in turn acts as input for the thought in the 

next iteration of the loop. 

 

For example, sample session 2: Question: What is the latest AI 

trend? Thought: I should search the web for AI trends. Action: 

search_web: Latest AI trends PAUSE You will be called again 

with this: Observation: AI is shifting towards multi-modal models 

in 2024. Answer: The latest AI trend is multi-modal models in 

2024. 

 

Finally we end with the line, “Now it’s your turn.” 

 

3.4 Tools 

 

To enhance the AI agent’s functionality, several tools are 

integrated to perform external tasks such as web searching, 

mathematical calculations, and retrieving planetary data. Each 

tool provides specific capabilities that assist the agent in executing 

reasoning-based actions efficiently. 

 

SerpAPI, Web Search Tool: SerpAPI is a Google Search API 

that allows the agent to retrieve search results programmatically. 

Before using this API, the google-search-results package must be 

installed. The API enables the agent to query Google, fetch 

relevant results, and extract information from organic search 

listings. This functionality is useful for retrieving up-to-date 

information that may not be present in the AI’s pre-trained 

knowledge base. 

 

Mathematical Computation Tool: The agent includes a simple 

evaluation tool to process mathematical expressions dynamically. 

This allows users to input arithmetic operations, which the agent 

computes and returns. By leveraging Python’s built-in evaluation 

mechanisms, the tool supports basic operations like addition, 

subtraction, multiplication, and division. 

 

Planet Mass Retrieval Tool: It provides the mass of various 

planets in the Solar System based on predefined values. When a 

user asks for a planet’s mass, the tool matches the input with the 

corresponding celestial body and returns its standard mass in 

kilograms. This ensures accurate and quick retrieval of 

astronomical data. 

 

3.5 Running the AI Agent 

 

Once the AI agent and its tools are set up, it is executed using a 

loop-based mechanism that enables interaction, reasoning, and 

tool usage. The agent loop serves as the core logic of how the 

agent processes queries and responds iteratively. 

 

Defining Tool Functions: A dictionary 

named tool_functions maps function names to their 

corresponding implementations. This ensures that the agent can 

dynamically call specific tools when required. The available tools 

include: 

• calculate – Evaluates mathematical expressions. 

• get_planet_mass – Retrieves the mass of a given planet. 

• search_web – Searches the web using the SerpAPI. 

 

Agent Loop Mechanism: The agent_loop function specifies how 

the agent will operate. The loop operates based on the following 

logic: 

 

• Initialization: 

o An instance of the Agent class is created with 

a system prompt. 

o A list of available tools is defined. 

o The user query is set as the first input. 

• Iteration & Processing: 

o The loop runs for a predefined maximum 

number of iterations. 

o The agent processes the query and generates a 

response. 

o The response is printed for monitoring. 

• Action Handling: 

o If the agent detects an action request (e.g., 

calling a tool), it extracts the tool name and 

argument using regular expressions. 

o If the specified tool is available, the function is 

executed with the provided argument. 

o The observation from the tool is appended as 

feedback to the next cycle of reasoning. 

• Answer Generation: 

o If the agent determines that an answer has been 

reached, it exits the loop. 

o Otherwise, the cycle continues with the 

updated prompt. 

 

Execution Example: The agent is initiated with a sample query: 

agent_loop(max_iterations=10, system=system_prompt, 

query="What is the capital city of India?") 

 

• The loop ensures that the agent can think, act, and 

observe repeatedly until a final response is produced. 

• If external information is required, the agent utilizes one 

of the defined tools before generating a final answer. 

 

3.6 Calculating Response Time and Accuracy 

 

To evaluate the accuracy and time taken, five queries were given. 

User input was taken to determine the relevance of the given 

output. To calculate the response time, the time module in Python 

was used. A list ‘response_time’ stored the time taken for the 

query’s answer to be returned. Followed by that, the average 

response time was calculated. Finally, the accuracy for the queries 

was determined by using the responses that the user gave ‘yes’ to 

by the total number of queries. 

 

IV. RESULTS AND DISCUSSIONS 
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Thought: I need to find the capital city of 

India. 

Action: search_web: Capital city of India 

PAUSE 

Observation: Delhi, officially the National 

Capital Territory (NCT) of Delhi, is a city 

and a union territory of India containing 

New Delhi, the capital of India. 

Thought: I have found the capital city of 

India, which is New Delhi. 

Answer: The capital city of India is New 

Delhi. 

The below code snippet shows how the AI Agent using ReAct 

framework functions. The user queries, “What is the capital city 

of Delhi?” Then the Agent goes through the following: 

 

 

Figure 4 shows how the ReAct framework used by the AI Agent 

for performing web searching using the given tools. The LLM acts 

as the core of the AI Agent and it utilizes the tools to perform the 

required tasks. The SERP API performs real-time searching 

which assists the model in providing the most relevant 

information related to the query. The AI-powered web search 

agent was tested using SERP API to determine the efficiency. 

 

To get an estimate of the time taken, 5 queries were given to the 

agent. The relevance of the statements was also determined by 

calculating accuracy. The system demonstrated an average 

response time of 1.44 seconds, indicating efficient processing and 

retrieval speed. This performance is crucial for real-time web 

search applications where minimal latency is required. To assess 

accuracy, we manually reviewed the top search result returned by 

our AI for each query. Based on a binary user feedback system 

(relevant/non-relevant), the AI agent achieved an accuracy of 

80%. This suggests that while the system is effective in retrieving 

relevant results, there is room for improvement in refining the 

query processing and filtering mechanisms. 

 

V. CONCLUSION 

 

In this paper, we developed and evaluated an AI-powered web 

search assistant capable of retrieving and filtering relevant 

information in real-time. By leveraging the SERP API, our system 

efficiently extracts query-based search results and assesses their 

relevance based on user feedback. The experimental results 

indicate that the AI agent achieves an accuracy of 80%, with 

an average response time of 1.44 seconds, demonstrating its 

effectiveness in providing quick and relevant search results. 

 

While the model performs well in retrieving factual data, some 

limitations remain, particularly in handling ambiguous queries 

and ranking information based on context. Future work could 

enhance the system by integrating natural language understanding 

(NLU) techniques, improving contextual relevance, and 

incorporating machine learning-based ranking models. Overall, 

this research contributes to the development of AI-powered search 

assistants, bridging the gap between automated information 

retrieval and user intent. 
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